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Abstract

A generalized minimum rank perturbation theory for identifying damage location and extent in nonlinear systems using

a model-based approach is presented. This model updating method is able to handle changes in the mass, damping and

stiffness parameters arising from the damage. The method uses a nonlinear discrete model of the system and the functional

form of the nonlinearities to create an augmented linear model of the system. A modal analysis technique that uses forcing

that is known but not prescribed is then used to solve for the modal properties of the augmented linear system after the

onset of damage. The methodology has been demonstrated for cubic spring nonlinearities. In this work, the class of

nonlinearities is expanded to include Coulomb friction. Several new algorithms are presented, including an iterative

generalized minimum rank perturbation theory and a technique based on multiple augmentations to determine damages in

linear and nonlinear parameters when there is an incomplete set of eigenvectors. Finally, two eigenvector filtering

algorithms, which reduce the effects of measurement noise, are presented.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the increasing need for air and space technologies that are capable of operating in extreme
environments for extended periods of time, there is a need for online damage detection and structural health
monitoring techniques. Although there has been a great deal of research focused on structural health
monitoring, most of the current methods ignore the effects of nonlinearities on the system dynamics, and use
purely linear approaches. This is motivated in part by the fact that linear methods are more developed than
nonlinear ones. Nonlinearities, however, are important in many structures and fluid-structural systems.
Hence, methodologies that account for the effects of nonlinearities are needed.

Typically, damage detection methodologies use information about both the healthy and damaged systems.
This information is in various forms, including a discrete or continuous model of the system, or modal
properties of the (linearized) system. Most current methodologies then extract system features such as natural
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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frequencies or mode shapes (for the linearized system) from measurements to detect damages. These (linear)
features are obtained by using well established linear modal analysis techniques in either the time or frequency
domain. These techniques are usually based on single input single output or multiple input multiple output
approaches. A review of time-based multiple input multiple output approaches and their main characteristics
was presented by Yang, Zhang, Li and Wu [1]. Such current available techniques include free and impulse
response methods such as the poly-reference complex exponential [2], eigensystem realization algorithms [3]
and Ibrahim time domain methods [4]. Also, forced response methods are available, such as auto-regressive
moving average vector [5] and direct system parameter identification [6], which use the forcing from natural
excitations to determine modal properties. The use of natural excitations makes these latter methods well-
suited for online damage detection. Complementary to these linear methods, nonlinear experimental analyses
are now under development. For example, nonlinear normal modes can be obtained by the harmonic balance
method, invariant manifolds technique, method of multiple time scales, and asymptotic methods [7].

In a model-based approach, model parameters are identified first, and then used for structural health
monitoring. Ibrahim and Saafan [8], and Heylen and Sas [9] provide a review of the four general categories of
linear nondestructive evaluation. The first category is sensitivity methods, which use the modal sensitivity to
parameter changes to identify damage. In this area, recently Leung et al. [10] proposed a more accurate
solution technique for inverse sensitivity equations for asymmetric systems. The second is eigenstructure
assignment techniques, which place eigenvalues and/or eigenvectors of the closed loop system. A good review
of different eigenstructure assignment techniques can be found in the work by Andry et al. [11]. Lim [12]
developed a constrained eigenstructure assignment for damage detection that formed a direct relation between
the feedback control and structural parameter changes, while Jiang, Tang and Wang [13] developed optimal
controllers for sensitivity enhancement by eigenstructure assignment. The third category includes optimal
matrix update methods [14,15], which can be used for both system identification and damage detection. These
methods update the system model using a set of constraints (e.g. maintaining the sparsity pattern of the
original finite element model) for a given cost function (e.g. the minimum Frobenius norm for the update).
The fourth and last category includes minimum rank perturbation methods [16–20], which solve for damage as
the minimum rank solution to perturbation equations for the system. The key idea of minimum rank
perturbation approaches is to exploit the fact that, for most physical models, there is a direct and simple
relation between properties at one location in the system and the location of the corresponding entries of the
matrices of the discrete system model. Hence, a localized damage corresponds to a localized change in system
matrices. Thus, the change/perturbation of the system matrices is sparse and has low rank.

In this work, an algorithm that uses a system augmentation and a generalized minimum rank perturbation
theory (GMRPT) [21,22] for nonlinear systems is developed and demonstrated to handle multiple
simultaneous damages in linear and nonlinear parameters. The augmentation was shown to work for
systems with cubic spring nonlinearities, and can be extended to any system where the functional form of the
nonlinearity is known as a function of the state vector of the system and its derivatives. Control theory also
uses a type of augmentation in the area of linear [23] and nonlinear [24,25] observers. However, the primary
purpose of these observers is for state estimation coupled with state feedback to control the system. This
differs significantly from the augmentation in this paper. The augmentation herein is used to generate an
augmented (fictitious) linear system that follows a single trajectory of the real nonlinear system. This
augmentation is not used to control the system, rather it is defined such that the augmented linear system
follows (in a given subspace) a given trajectory of the nonlinear system while allowing for the use of linear
theories for system identification and damage detection.

The augmentation requires that the forcing of the system be known but not prescribed. Hence, a technique
such as direct system parameter identification [6] can be employed to perform the modal analysis (for the
augmented system) to determine the modal properties of the augmented system since it uses as forcing the
external excitations of the system. The augmented modal properties are then used by the generalized minimum
rank perturbation theory [21], to determine damage location and extent. Generalized minimum rank
perturbation theory was developed to handle the asymmetric damage scenarios that result from damage in the
nonlinear portion of the system which, in turn, are due to the specialized nature of the augmentation.

A theoretical framework for the detection of simultaneous damages is developed herein, and several
additions to the damage detection method proposed previously by the authors [21,22] are presented.
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A subspace selection algorithm is used to reduce the effects of measurement noise. Also, an iterative approach
to the solution of the left eigenvectors for simultaneous damage detection is employed. Moreover, an alternate
approach is presented for the cases where an incomplete set of right eigenvectors are known. This new
approach is based on multiple augmentations of the same nonlinear system. Finally, eigenvector filtering
algorithms are discussed to reduce the effects of random measurement noise on damage detection. These
techniques are demonstrated on nonlinear mass–spring systems and nonlinear frame structures. Complex
simultaneous damage scenarios are explored and the effectiveness of the methodology for nonlinearities such
as cubic springs and Coulomb friction are presented. Also, the influence of measurement noise with and
without filtering algorithms is demonstrated through numerical simulations.
2. General methodology

In this section, the methodology for determining damage in nonlinear systems using system augmentation
and generalized minimum rank perturbation theory [21] is presented. First, the augmentation procedure is
described. Then, the procedure for detecting damage location and extent by generalized minimum rank
perturbation theory is extended for the case of simultaneous damages in the mass, damping and stiffness
parameters. Additionally, the damage detection methodology is extended by using multiple augmentations
to determine damages in the nonlinear parameters in order to handle the cases where only an incomplete set
of right eigenvectors are known. Finally, eigenvector filtering algorithms, which reduce the effects of noise,
are detailed.

The work in this paper builds on three key papers which introduce and discuss minimum rank perturbation
theory [16,19], generalized minimum rank perturbation theory, and system augmentation [21]. Although the
following presentation of the methodology is self-contained, these three papers [16,19,21] provide additional
detailed background on many of the approaches explicated herein.
2.1. System augmentation for modeling nonlinear systems

In this subsection, a method to model a single trajectory of a nonlinear system as a projection of the
trajectory of an augmented linear system (of higher dimension) is presented. Consider a nonlinear system
(characterized by a coordinate vector x and forced by an external excitation gðtÞ) expressed as

MO 0

0 I

� �
€x

_x

� �
þ

DO KO

�I 0

� �
_x

x

� �
þ

fðx; _x; €xÞ

0

� �
¼

gðtÞ

0

� �
, (1)

where MO, DO, and KO are the mass, damping, and stiffness matrices of the linearized system, and f is a
nonlinear function. For a large category of nonlinearities, Eq. (1) can be rewritten as [21]

MO €xþDO _xþ KOxþNI €yþND _yþNSy ¼ gðtÞ,

which in first-order matrix form becomes
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0 I 0 0
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0 0 0 I

2
6664

3
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0 NCS NAD NAS

0 0 �I 0

2
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x

_y

y

2
66664

3
77775 ¼

gðtÞ

0

hðtÞ

0

2
6664

3
7775, (2)

where NI , NAI , ND, NAD, NS, NAS, and NCS are constant matrices (more details are presented in the
following), and y contains nonlinear terms. Eq. (2) may be written as a standard linear system as

MO NI

0 NAI

" #
€x

€y

" #
þ

DO ND

0 NAD

" #
_x

_y

" #
þ

KO NS

NCS NAS
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hðtÞ

" #
,



ARTICLE IN PRESS
K. D’Souza, B.I. Epureanu / Journal of Sound and Vibration 316 (2008) 101–121104
M
€x

€y

" #
þD

_x

_y

" #
þ K

x

y

" #
¼

gðtÞ

hðtÞ

" #
, (3)

where M, D, and K are the mass, damping, and stiffness matrices of the augmented (linear) system. The
function hðtÞ (in Eqs. (2) and (3)) is introduced to preserve most of the properties of the matrices in Eq. (1).
The augmentation is expressed such that it matches the form of the nonlinearities in the systems of interest.
One may note that the system can be augmented in several ways (by choosing NAI , NAD, NAS, and NCS) as to
optimally suit various applications. Eq. (3) is the augmented linear model of the nonlinear system for which
the eigenvalue problem must be solved.

2.1.1. Examples of augmentation

The specific form of the augmentation used is of crucial importance for the accuracy and robustness of the
modal analysis technique used (e.g. direct system parameter identification). Hence, as discussed in the next
subsection, the augmentation is done in a physical way [21]. Next, two examples of the augmentation for
nonlinear one degree of freedom systems are presented. The first example illustrates how the augmentation is
carried out for a cubic spring nonlinearity. The second example demonstrates how the augmentation is done
for a Coulomb friction nonlinearity.

Consider an example of a one degree of freedom system with a mass connected to ground by a linear and a
nonlinear (cubic) spring. The equation of motion of this simple nonlinear system can be written as

m €xþ kxþ knx3 ¼ gðtÞ, (4)

where m is the mass, k is the linear spring stiffness, and kn is the nonlinear spring stiffness. Using a physically
consistent augmentation developed by the authors [21] the new augmented system is represented by the
following equation:

m €xþ kxþNSy ¼ gðtÞ;

NAI €yþNAD _yþNCSxþNASy ¼ hðtÞ:
(5)

In this case, NS and NCS are both simply kn, and y is x3, while NAI , NAD, and NAS are constants of our
choosing. In this paper, NAI was set to values of order of magnitude similar to the mass, NAS was chosen to be
multiples of kn, and NAD was set to zero. Finally, comparing Eqs. (2) and (4), one may note that NI and ND

are zero.
The augmentation for Coulomb friction is distinct because Coulomb friction forces are discontinuous. The

following is an example of how the augmentation is applied to a one degree of freedom mass connected to the
ground by a linear spring and also rubbing against the ground. The equation of motion for this nonlinear
system can be written as

m €xþ kxþ msignð _xÞ ¼ gðtÞ, (6)

where m is the coefficient of Coulomb friction. The augmentation described in this paper is represented by the
following system:

m €xþ kxþNI €y ¼ gðtÞ;

NAI €yþNAD _yþNCSxþNASy ¼ hðtÞ:
(7)

In this case, €y ¼ signð _xÞ and NI is m, while ND and NS are zero, and NAI , NAD, NCS and NAS are constants of
our choosing. In this paper, m was chosen for NAI , zero was chosen for NAD, and a constant was chosen for
NAS, while NCS was simply set to the negative of NAS.

2.1.2. Physical augmentation

Although there is a great amount of flexibility in choosing an augmentation for a system, most modal
analysis techniques take advantage of certain physical properties of the systems they are identifying. In
particular, most modal analysis techniques require the system matrices to be positive definite because these
techniques are defined for vibration about a stable equilibrium. Next, an example of a brief proof of the
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Fig. 1. Conceptual sketch of an n degree of freedom system with mass i connected to ground by a nonlinear spring.
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positive definiteness of the augmented system matrices (such as the one in Eq. (5)) is given for a cubic spring
connecting a mass to the ground. Consider an n degree of freedom system with a cubic spring connecting mass
i to ground as shown in Fig. 1. The displacement of the system is given by x, the nonlinear spring stiffness is
kng, the augmented variable is y ¼ x3

i , and a is a parameter ðaX0Þ which characterizes the amount of damage
in the nonlinear spring stiffness (e.g. 0pao1 for softening damage). The parameter b (which corresponds to
the NCS) term equals one, while the parameter c (which corresponds to the NAS) term is greater than one. The
mass matrix of the augmented system is diagonal with all positive entries, and is therefore positive definite.
The augmented stiffness matrix is shown to be positive definite by showing that the following expression is
positive for kxk þ jyja0, i.e.

½x1 . . . xi . . . xn y�

k1;1 . . . k1;i . . . k1;n 0

..

. . .
. ..

. ..
.

0

ki;1 . . . ki;i . . . ki;n akng

..

. ..
. . .

. ..
.

0

kn;1 . . . kn;i . . . kn;n 0

0 0 bkng 0 0 ckng

2
666666666664

3
777777777775

x1

..

.

xi

..

.

xn

y

2
66666666664

3
77777777775
¼ Pþ ðbþ aÞkngxiyþ ckngy2

X0. (8)

Since y2 ¼ x6
i X0, xiy ¼ x4

i X0, and P is the value from just the linear portion of the system, which is itself
greater than zero, the only way the expression above can be equal to zero is when x ¼ 0 and y ¼ 0. Similar
proofs showing the positive definiteness can be obtained for a cubic spring connecting a mass to another mass
and for the case of Coulomb friction, but they are omitted here for the sake of brevity.
2.1.3. Extraction of augmented modal properties

The extraction of modal properties from an augmented system requires a modal analysis technique which
uses an excitation that is known, but not prescribed because the forcing term hðtÞ cannot be prescribed. Direct
system parameter identification is a technique that resembles auto-regressive moving average vector and
enables one to determine the mode shapes and natural frequencies of the system when the displacement of the
degrees of freedom (xðtÞ and yðtÞ) and the forcing (gðtÞ and hðtÞ) are known. The requirement of the modal
analysis technique to use a known but not prescribed forcing stems from the known but constrained forcing
hðtÞ. An example of implementation of the proposed approach is to measure the displacement vector xðtÞ and
the forcing vector gðtÞ. The vector yðtÞ is then computed from xðtÞ, and the vector hðtÞ is calculated to satisfy
Eq. (2).

A consequence of the manner in which the augmentation is done is the inability for damage to appear in the
augmented parameters. This means that damage occurring in NS, ND or NI will only be reflected in the linear
portion, and not the augmented portion of the system. The end result is that damage in nonlinear parameters
causes asymmetrical changes in the system matrices when using augmentation.
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2.2. Iterative generalized minimum rank perturbation theory for simultaneous damages

In this subsection, generalized minimum rank perturbation theory is extended to handle certain
simultaneous damages in the mass, damping, and stiffness parameters. The work closely follows Kaouk,
Zimmerman and Simmermacher with equations relating to the right eigenvectors developed in Ref. [16] and
equations involving the left eigenvectors developed by the authors. First, the damage location algorithm is
presented. Then, the damage extent algorithm for simultaneous damages is detailed. Finally, the iterative
nature of the algorithm, caused by the approach employed for the calculation of the left eigenvectors, is
presented.

2.2.1. Identification of damage location

To provide generalized minimum rank perturbation theory [21,22] with the degrees of freedom where
damages are located, an algorithm which follows closely that of minimum rank perturbation theory [19] is
used. In particular, it is assumed that a discrete, n-degree of freedom (e.g. finite element) model exists for the
healthy augmented system, such thatM, D, and K are the augmented n� n mass, (proportional) damping, and
stiffness matrices. Hence, damage vectors di and ci can be defined as

di � Zdivdi ¼ ðl
2
diDMþ ldiDDþ DKÞvdi,

cTi � uTdiZdi ¼ uTdiðl
2
diDMþ ldiDDþ DKÞ; with (9)

Zdi � l2diMþ ldiDþ K,

where the ith eigenvalue ldi, ith right eigenvector vdi, and ith left eigenvector udi are of the damaged structure,
and DM, DD and DK are the exact perturbation matrices (that reflect the nature of the structural damage).

A composite damage vector may be defined from (all or just a few) multiple measured modes as

d ¼
1

q

Xq

i¼1

di

kvdik
, (10)

where q is the number of measured modes.
Also, Zimmerman and Kaouk [19] developed an alternative view of the state of damage where Eq. (9) can be

rewritten as

d
j
i � z

j
divdi ¼ kz

j
dikkvdik cosðy

j
iÞ, (11)

where d
j
i is the jth component (i.e. jth degree of freedom) of the ith damage vector, z

j
di is the jth row of

the matrix Zdi, and yj
i is the angle between the vectors z

j
di and vdi. A damage detector aj

i may be calculated from
yj

i as

aj
i ¼ yj

i

180�

p

� �
� 90�. (12)

Finally, a composite damage vector c may be defined from the multiple measured modes as

cj ¼
1

q

Xq

i¼1

ja
j
ij. (13)

The indexes j where d
j
i, a

j
i or gj are large are the identified locations of damage. We denote by p the number of

such locations.

2.2.2. Damage isolation

Once the damage location is known, the next step in assessing structural health is to determine the damage
extent by isolating which system matrices are affected by damage. Following closely the work developed in
minimum rank perturbation theory [16], we extended the previous approach for the case of asymmetric
damage scenarios. This section uses the cross-orthogonality properties of the modes to the system matrices
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and a specialized pseudo-inverse developed in Ref. [16]. Using the information garnered from the damage
location algorithm, damage location matrices, B and A can be defined as

MVdK
2
d þDVdKd þ KVd ¼ DMVdK

2
d þ DDVdKd þ DKVd � B;

K2
dU

T
dMþ KdU

T
dDþUT

dK ¼ K2
dU

T
dDMþ KdU

T
dDDþUT

dDK � AT;
(14)

where

Kd ¼ diagðld1; ld2 . . . ldqÞ,

Vd ¼ ½vd1; vd2 . . . vdq�,

B ¼ ½d1; d2 . . . dq�,

UT
d ¼ ½ud1; ud2 . . . udq�

T,

AT
¼ ½c1; c2 . . . cq�

T.

Note that B and A can be determined from the original system matrices (M, D, K) and only p of the measured
damaged eigenvalues and eigenvectors. However, using the subspace selection algorithm for GMRPT
(presented below), all q measured modes (q4p) can be used to define B and A to obtain more accurate results.

Matrices B and A contain contributions of force imbalances due to the damage in the mass, damping and
stiffness parameters. The matrix B is precisely that used by Kaouk et al. [16]. This force imbalance can be
written as

B ¼ BMK2
d þ BDKd þ BK , (15)

where

BM ¼ DMVd ; BD ¼ DDVd ; BK ¼ DKVd , (16)

and

A ¼ AMK2
d þ ADKd þ AK , (17)

where

AM ¼ DMTUd ; AD ¼ DDTUd ; AK ¼ DKTUd . (18)

The motivation for expressing B and A as in Eqs. (15) and (17), is that force imbalances due to the mass,
damping, and stiffness matrices are separated according to their respective matrix. The matrices BM , BD, BK ,
AM , AD and AK can be determined using the cross-orthogonality relations that arise from the proportional
damping assumption. By extracting mass normalized right and left eigenvectors, the cross-orthogonality
relations of the damaged system can be expressed as

UT
d ðM� DMÞVd ¼ Iq�q,

UT
d ðD� DDÞVd ¼ diagð2zd1ld1 . . . 2zdqldqÞ ¼ Rd , (19)

UT
d ðK� DKÞVd ¼ diagðl2d1 . . . l

2
dqÞ ¼ K2

d ,

where zdi is the damping ratio for the ith mode of the damaged structure. Rearranging Eq. (19) yields

UT
dDMVd ¼ UT

dMVd � Iq�q � UT
dBM ,

UT
dDDVd ¼ UT

dDVd � Rd � UT
dBD, (20)

UT
dDKVd ¼ UT

dKVd � K2
d � UT

dBK .
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Similarly, Eq. (19) can be rearranged to yield relations for the force imbalances in the A matrices to obtain

VT
dAM � VT

dM
TUd � Iq�q,

VT
dAD � VT

dD
TUd � Rd , (21)

VT
dAK � VT

dK
TUd � K2

d .

All the damage location matrices, BM , BD, BK , AM , AD and AK , can be calculated from Eqs. (20) and (21). In
the case where the number of measured modes equals the number of degrees of freedom in the model (i.e.
q ¼ n), these matrices can be computed by using the inverses of Vd and Ud . However, often the number of
measured modes is much less than the size of the model (q5n). For this case, the use of the Moore–Penrose
pseudo-inverse of the matrices Vd and Ud comes to mind. Unfortunately, the sparsity of B and A would not be
reflected in BM , BD, BK , AM , AD and AK . Hence, the minimality of the rank of the variation in the mass,
damping and stiffness matrices cannot be capitalized upon. Nonetheless, this problem can be overcome by
defining a pseudo-inverse that preserves the sparsity of the damage location matrices B and A. For matrix B,
this has been proposed by Kaouk et al. [16]. This approach results in solving for the n� q real matrices PB and
PA as follows:

PBðU
T
dBÞ ¼ B;

PAðV
T
dAÞ ¼ A;

so that
PB ¼ BðUT

dBÞ
�1;

PA ¼ AðVT
dAÞ

�1:
(22)

Once PB and PA are computed, BM , BD, BK , AM , AD, and AK can be calculated using Eqs. (20) and (21) as

BM ¼ PBðU
T
dMVd � Iq�qÞ;

BD ¼ PBðU
T
dDVd � RdÞ;

BK ¼ PBðU
T
dKVd � K2

d Þ;

and

AM ¼ PAðV
T
dM

TUd � Iq�qÞ;

AD ¼ PAðV
T
dD

TUd � RdÞ;

AK ¼ PAðV
T
dK

TUd � K2
dÞ:

(23)

From Eq. (22) it is clear that PB and PA have the same sparsity pattern as matrices B and A, respectively.
Therefore, matrices BM , BD, BK will also reflect the sparsity pattern of B, while AM , AD and AK will reflect the
sparsity pattern of A.

2.2.3. Equations of generalized minimum rank perturbation theory

In this section, the equations of generalized minimum rank perturbation theory are only outlined. For a
more complete proof the reader is referred to Ref. [21]. The work presented in Ref. [21] discusses minimal rank
solutions for asymmetric damage cases, and is a generalization of symmetric damage cases developed in
Ref. [19]. This section provides the unique solution to the unknown perturbation matrices from Eqs. (24) and
(25) that is minimum rank. For clarity, the following discussion is for the case where q ¼ p. Nonetheless, the
generalized minimum rank perturbation theory subspace selection algorithm directly extends these results for
the case where q4p. The only unknowns in Eqs. (16) and (18) are the damage perturbation matrices. Each of
the three equations in Eq. (16) can be expressed as

CXB ¼ YB, (24)

where matrices XB and YB are known (e.g. XB ¼ Vd and YB ¼ BM), and matrix C is unknown (e.g. C ¼ DM).
Also, each of the three equations in Eq. (18) can be expressed as

CTXA ¼ YA, (25)

where matrices XA and YA are known (e.g. XA ¼ Ud and YA ¼ AM). The minimum rank solution C of
Eqs. (24) and (25) is unique and can be expressed as

C ¼ YBHYT
A; with H ¼ ðYT

AXBÞ
�1. (26)
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This solution given by generalized minimum rank perturbation theory [21] is unique and of rank p, where
XB, XA, YB, and YA 2 Rn�p are given, with pon and rankðCÞ ¼ rankðXBÞ ¼ rankðXAÞ ¼ rankðYBÞ ¼

rankðYAÞ ¼ p.
2.2.4. Generalized minimum rank perturbation theory subspace selection

Experimental modal data is always affected by measurement and eigenvector/eigenvalue extraction noise. In
this section, a subspace selection algorithm, which reduces the influence of noise, is presented. This algorithm
is the same as the one developed by Kaouk et al. [16] for MRPT, but it has been extended for GMRPT. This
section uses a singular value decomposition of the force imbalance matrices (e.g. Bm) to filter out noise. The
subspace selection algorithm is defined as the numerically well conditioned search for two matrices ZB 2 Rq�p̂B

and ZA 2 Rq�p̂A such that

CXBZB ¼ YBZB; and CTXAZA ¼ YAZA. (27)

The unknowns are p̂B and p̂A, i.e. the numerical rank of YB, YA, and ZB, ZA. Note that p̂Boq and p̂Aoq.
Consider the singular value decomposition of YB and YA defined as

YB ¼ ½UB1 UB2�
RB 0

0 ReB

" #
½VB1 VB2�

T;

YA ¼ ½UA1 UA2�
RA 0

0 ReA

" #
½VA1 VA2�

T;

(28)

where RB and RA include singular values larger than e, while ReB and ReA include singular values smaller than e
(where e is a small positive constant which approximates zero). Also, UB, VB and UA, VA are the left and right
singular vectors in partitioned form for YB and YA. When YB is rank deficient, the range of YB is spanned by
the p̂B columns of UB1. Therefore, the goal is to find matrices ZB and ZA such that

YBZB ¼ UB1; and YAZA ¼ UA1. (29)

The matrices ZB and ZA can be calculated from Eq. (29) by employing the pseudo-inverse YþB of YB and YþA of
YA, and by neglecting ReB and ReA (for small e) to obtain

ZB ¼ YþBUB1 � VB1RBU
T
B1UB1 ¼ VB1RB;

ZA ¼ YþAUA1 � VA1RAU
T
A1UA1 ¼ VA1RA:

(30)

The solution of Eq. (27) is then given by

C ¼ YBZBðZ
T
AY

T
AXBZBÞ

�1ZT
AY

T
A. (31)

The final form of the solution using generalized minimum rank perturbation theory with the subspace
selection algorithm and simultaneous damages can be written as

DM ¼ BMZBM ðZ
T
AMAT

MVdZBM Þ
�1ZT

AMAT
M ,

DD ¼ BDZBDðZ
T
ADA

T
DVdZBDÞ

�1ZT
ADA

T
D, (32)

DK ¼ BKZBK ðZ
T
AKA

T
KVdZBK Þ

�1ZT
AKA

T
K ,

where matrices ZBM , ZBD, ZBK , and ZAM , ZAD, ZAK from Eq. (32) are found for their respective XB, YB, and
XA, YA (used in Eqs. (24) and (25)).

The theory above has been developed for (proportionally) damped structures. This can easily be contracted
for the case where the model does not include proportional damping by simply setting D, DD, Bd and Ad to
zero in the formulation. For simplicity, the systems explored in this paper include no proportional damping.
Instead a more challenging form of (nonlinear) damping, caused by Coulomb friction is investigated.
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2.2.5. Determination of left eigenvectors

The determination of the left eigenvectors of the system is an essential element of generalized minimum rank
perturbation theory as revealed by Eq. (32). This section uses the cross-orthogonality properties of the modes
to the system matrices to help extract the left eigenvectors. In previous work by the authors [21], the
orthogonality properties of the eigenvectors of the system to the mass matrix were capitalized upon. For
example, assuming that no damage occurs in the mass matrix (i.e. DM ¼ 0), the following equation was used
to determine the needed left eigenvectors

UT
dMVd ¼ I; so that UT

d ¼ V�1d M�1. (33)

For the case of damage in the mass matrix, Eq. (33) cannot be used. However, assuming that no damage
occurs in the stiffness matrix (i.e. DK ¼ 0), the following equation was used to determine the needed left
eigenvectors:

UT
dKVd ¼ K2

d ; so that UT
d ¼ K2

dV
�1
d K�1. (34)

For the case of simultaneous damages in the mass, damping, and stiffness parameters, an iterative update
approach can be used to determine the left eigenvectors and the damaged state of the system. This approach is
referred to as the iterative generalized minimum rank perturbation theory method. The first step in this
approach is to apply the procedure as if the mass matrix is healthy. Namely, use the orthogonality property
given by Eq. (33) to determine a set of left eigenvectors. Then, use Eq. (32) to determine the DK matrix and
update the K matrix. The next step is to use the updated K matrix as if it is healthy. For example, use the
orthogonality property given by Eq. (34). Then, use Eq. (32) to determine the DM and update the M matrix.
These two steps are then repeated with the most recently updated M and K matrices until the process
converges. The authors have found that this procedure only takes a few iterations to reach convergence. The
converged solution satisfies the following equation

CM_sþ CKs ¼ Cn,

where the matrices CM and CK are the converged matrices, s is the full (linear, augmented) state vector of the
forced system s ¼ ½ _x x _y y�T, and n is the full forcing vector. The matrix C is a constant and unknown matrix.
The matrix C can be determined by collecting snapshots of n in time. Denote ni (for i ¼ 1; . . . ; r, with r4n) a
set of r such snapshots obtained at r time instances. At those instances the augmented state vectors are denoted
by si. After convergence, the matrices CM and CK are known. Hence, a set of vectors ci can be computed as

wi ¼ CM_si þ CKsi.

Grouping the vectors wi and the snapshots ni as columns (and using wi ¼ Cni), the matrix C can be determined
as C ¼ ½w1 . . .wi . . .wr�½n1 . . . ni . . . nr�

þ, where the superscript þ denotes the pseudo-inverse. Finally, the mass
and stiffness matrices of the damaged augmented system can be calculated by multiplying the converged CM
and CK matrices by C�1.

2.3. Multiple augmentations generalized minimum rank perturbation theory for damage detection

As an alternative to the approach presented in the previous subsection, in this subsection a damage
detection methodology that uses multiple augmentations to determine damages in nonlinear parameters is
developed for the case where only an incomplete set of eigenvectors is available, since in practice all modes and
frequencies of the system would be very difficult to obtain accurately. This still requires all finite element
model degrees of freedom to be measured. This approach is referred to as multiple augmentations generalized
minimum rank perturbation theory. This section exploits the fact that multiple augmented system models can
be used to follow the same nonlinear trajectory in order to determine the damage in the nonlinear parameters.
The first step of the methodology is to identify the degrees of freedom where damage is located, similar to the
previous subsection, by using Eqs. (10)–(13). Next, information from the damage location equations and
multiple augmentations is used to detect the damage in the nonlinear parameters. Finally, minimum rank
perturbation theory is used to detect damage in the linear portion of the system after the system matrices are
updated and the system is augmented (once more) in a symmetric form.
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Consider a system with cubic spring nonlinearities, and which, for simplicity, has no damping. Also for
simplicity, assume that damage only occurs in the linear and nonlinear stiffness terms. The augmented system
matrices have the following form:

M ¼
MO 0

0 NAI

" #
and K ¼

Kd NSd

NCS NAS

" #
, (35)

where M and K are the augmented mass and stiffness matrices, Kd is the damaged linear stiffness matrix, NSd

is the damaged matrix that contains the nonlinear parameters, and MO, NAI , NCS and NAS are as previously
defined. The resulting eigenvalue problem can be written as

�l2ik
MO 0

0 NAI

" #
vLik

vAik

" #
¼

Kd NSd

NCS NASi

" #
vLik

vAik

" #
, (36)

where lik is the kth eigenvalue of the ith augmentation of the system, with vLik being the linear part (upper
portion) of the corresponding eigenvector and vAik being the augmented part (lower portion) of the
corresponding eigenvector.

The top part of Eq. (36) (corresponding to the actual linearized system equations alone) for two different
augmentations i and j and eigenvectors numbered k and l gives the following equations:

KdvLik þNSdvAik ¼ �l
2
ikMOvLik, (37)

KdvLjl þNSdvAjl ¼ �l
2
jlMOvLjl . (38)

Premultiplying Eq. (37) by vTLjl and Eq. (38) by vTLik yields

vTLjlKdvLik þ vTLjlNSdvAik ¼ �l
2
ikv

T
LjlMOvLik, (39)

vTLikKdvLjl þ vTLikNSdvAjl ¼ �l
2
jlv

T
LikMOvLjl . (40)

Subtracting Eq. (40) from Eq. (39), using Kd ¼ KT
d , substituting NSd ¼ NS � DN, and solving for DN yields

vTLjlDNvAik � vTLikDNvAjl ¼ vTLjlNSvAik � vTLikNSvAjl þ ðl
2
ik � l2jlÞv

T
LjlMOvLik. (41)

The result is a scalar equation for each pair ði; jÞ, with the unknowns in the DN matrix, which correspond to
nonlinear parameters in the degrees of freedom containing damage found from Eqs. (10) to (13). A separate
equation can be written for each combination of different augmentations and eigenvectors. The equations
obtained for each pair ði; jÞ can be combined and rearranged as to form

r11 r12 � � � r1p
r21 r22 � � � r2p

..

. ..
. . .

. ..
.

rm
1 rm

2 � � � rm
p

2
6666664

3
7777775

D1

D2

..

.

Dp

2
666664

3
777775 ¼

b1
b2

..

.

bm

2
666664

3
777775, (42)

where the constants rs
r (for r ¼ 1; . . . ; p, and s ¼ 1; . . . ;m) come from combinations of entries from vTLjl , v

T
Lik,

vAik, and vAjl . The unknowns Dr come from elements of DN, and can be greater or less than zero. The constants
bs are computed directly from the right hand side of Eq. (41). For the case of zero measurement error, the
number of equations m has to be at least equal to the number of unknowns p. More realistic scenarios, with
measurement errors, require m4p, as discussed in the results (below).

After the damages in nonlinear parameters has been calculated, the system matrices can be updated. A new
augmentation can then be generated so that it corresponds to a symmetric augmented system. The damage
location algorithm can then be employed once more to determine where the damage in linear parameters
resides, and finally minimum rank perturbation theory can be used to determine the extent of the damage in
linear parameters.
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2.4. Eigenvector filtering algorithms

The measurement and eigenvector/eigenvalue extraction noise which affects eigenanalyses performed
experimentally can be alleviated by the following two filtering algorithms.

The first filtering algorithm exploits the fact that no damage can occur in the augmented equations of the
system, and was first proposed by the authors [26]. The filtering algorithm uses the fact that no damage can
occur in the augmented equations, which implies that asymmetric damage scenarios may occur. The algorithm
filters all q measured eigenvectors of the system by placing them into Eq. (9). Then, for each eigenvector one
enforces that no damage can occur in the elements of di corresponding to the augmented degrees of freedom.
This is done by calculating new entries for the eigenvector in the augmented degrees of freedom corresponding
to zero damage. This calculation is done by balancing each eigenvector component exactly with the
eigenvector components that couple with it (the degrees of freedom that contain the nonlinearity). Since there
should never be any damage in the augmented equations, this filtering algorithm can be applied before

the damage location is determined.
The second filtering algorithm, which was developed by Zimmerman and Kaouk [19], is also useful in

reducing the effects of noise. This filtering algorithm is used after the damage location is determined. It is
assumed that the nonzero elements of the vector di associated with undamaged degrees of freedom are due to
eigenvector errors, and can be set to zero. The result is a filtered (and augmented) damage vector dfi, which can
then be used to obtain the ith filtered eigenvector vdfi using

ðl2diMþ KÞvdfi ¼ dfi.

3. Results

To demonstrate the proposed method, numerical simulations on nonlinear systems of the type shown in
Figs. 2–4 are performed. Matrices MO, KO, NI , NS, NAI , NAD, NAS and NCS were generated for each of the
systems. Next, the damage detection methods discussed were implemented for each of the systems. Random
measurement noise was also included to determine the sensitivity of the approaches and to estimate the
effectiveness of the filtering algorithms.

3.1. Case 1: Nonlinear Kabe system

The nonlinear Kabe system shown in Fig. 2 is based on a linear Kabe system which was investigated
previously by Zimmerman and Kaouk [19]. With knowledge of the linear and augmented system matrices,
numerical simulations were conducted. Each mass was forced harmonically. The vector of displacements xðtÞ
was calculated by standard time integration, while yðtÞ and hðtÞ were calculated based on their relation to
xðtÞ. The eigenvalues and eigenvectors of the augmented matrices were obtained by using the time series for
xðtÞ, gðtÞ, yðtÞ and hðtÞ. Next, the iterative generalized minimum rank perturbation theory technique was used
to determine the damage location and extent by using the modal data. The iterative generalized minimum rank
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Fig. 2. A nonlinear Kabe-type problem, which also includes 12 cubic springs and Coulomb friction at two locations.
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Fig. 3. Truss structure with two cubic springs and Coulomb friction at two locations.

Fig. 4. Linear 3-bay structure with four cubic springs connecting joints to ground and eight cubic springs connecting joints to other joints

(the dark colored elements represent nonlinear beams, while the light colored elements represent linear beams).
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perturbation theory technique required the full set of the right eigenvectors to be measured to be used. Trials
were conducted to show the effectiveness of calculating simultaneous damages in the mass and stiffness
parameters and the effect of random noise.

To determine the effectiveness of the iterative generalized minimum rank perturbation theory method
(presented in Section 2.2), a case where two linear and two nonlinear springs were damaged (in the stiffness
matrix), and the Coulomb friction increased at both locations was investigated using the exact eigenvalues and
right eigenvectors of the system and using noisy right eigenvectors. Fig. 5 presents element by element the
values of the mass and stiffness perturbation matrices (DM and DK) obtained using generalized minimum rank
perturbation theory. The x-axes in each plot represent the index of a column vector obtained from storing the
upper triangular portion of the perturbation matrix into a column vector. In order to better visualize the
results every tenth index is plotted unless the absolute value of the average value of damage predicted is greater
than 0:05 for (a) and 10 for (b). The y-axes in the plots represent the entries of the difference between the
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K. D’Souza, B.I. Epureanu / Journal of Sound and Vibration 316 (2008) 101–121114
original and updated matrices for (a) DM and for (b) DK. In each plot, a line demarcates the section of linear
and nonlinear parameters.

The figure illustrates how the method predicts the exact damage in both the mass and stiffness parameters
when using exact eigenvalues and right eigenvectors of the system. For the case where 5% random noise was
added to the right eigenvectors the average damage values for 100 separate calculations were obtained, and
standard deviation error bars are plotted. The figure shows that the average value of the predicted damage is
close to the exact damage. The maximum standard deviation in the damaged parameters is approximately 6%
of the actual damage in that parameter.

3.2. Case 2: Nonlinear truss structure

This case explores the application of the iterative generalized minimum rank perturbation theory method
(presented in Section 2.2) to a more complex structure, shown schematically in Fig. 3. The method was used to
determine the damage location and extent. Trials were conducted to show the effectiveness of calculating
simultaneous damages in the mass and stiffness parameters and the effect of random measurement noise.

Using the exact eigenvalues and right eigenvectors of the system, the effectiveness of the algorithm is
demonstrated for a case with two damaged springs, one linear and one nonlinear (in the stiffness matrix), and
an increase in Coulomb friction at one location. The results shown in Fig. 6 illustrate that the method predicts
the exact damage in both the mass and stiffness parameters. Additionally, to determine the sensitivity of the
iterative generalized minimum rank perturbation theory method to random measurement noise, a 10%
random eigenvector and 1% random eigenvalue perturbation was added to the simulated measurements for
the same case. The average damage values for 100 separate calculations were obtained and standard deviation
error bars are plotted. The figure shows that the average value of the predicted damage is close to the exact
damage. The maximum standard deviation in the damaged parameters is approximately 25% of the actual
damage in that parameter.

3.3. Case 3: Nonlinear 3-bay structure

To demonstrate the multiple augmentations GMRPT technique (with an incomplete set of right
eigenvectors, as presented in Section 2.3), a numerical investigation of a nonlinear system of the type shown
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Fig. 6. Case 2: Predicted damage in the nonlinear truss system with an increase in Coulomb friction (a) and a reduction of stiffness in one
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in Fig. 4 was performed. The nonlinear 3-bay structure is based on a linear structure. The linear 3-bay structure
consists of 44 steel beams connected at 16 nodes, four of which are pinned to the ground. In addition to that,
the nonlinear frame also has four cubic springs connecting nodes to ground, as well as eight cubic spring
nonlinearities connecting nodes to each other and to the linear beams.

Augmented linear systems were created from the nonlinear system by obtaining the matrices MO, KO, NI ,
ND, NS, NAI , NAD, NAS and NCS. The NS matrix is composed of cubic spring stiffnesses, while NI and ND are
zero. The matrix NAI is a diagonal matrix containing the augmented masses. The augmented masses are
chosen of the same order of magnitude as the linear masses that they are coupled to. The matrix NCS is chosen
to keep the system symmetric, i.e. the entries are the cubic spring stiffnesses. The matrix NAS is a diagonal
matrix containing augmented spring stiffnesses that were varied for different augmentations. Finally, NAD is
zero. For the 15 different augmentations that were performed for each scenario, the augmented spring
stiffnesses ka, were varied as follows:

kaji ¼ i � knj ; for i ¼ 2; . . . ; 15;

kaj1 ¼ 1:5 � knj ;
(43)

where knj is the cubic spring stiffness for the jth nonlinear degree of freedom, and kaji is the corresponding
augmented spring stiffness for the ith augmentation.

Augmented modal properties of each of these augmented systems were then used to determine damage
location and extent. The number of modes used is restricted to the first 10 out of a total of 96. All 10 measured
modes were used in the updating for each case by using the subspace selection algorithm (discussed in Section
2.2.4). Numerical simulations were performed to show the effectiveness of the method for incomplete
measurements for various damage scenarios. Finally, different levels of noise were added to the eigenvectors
for different damage levels to determine the sensitivity of the method to noise and to the amount of damage.
3.4. Case 3: Scenario 1: Damage in nonlinear parameters

The first scenario explored for case 3 is damage in purely nonlinear parameters. The multiple augmentations
generalized minimum rank perturbation theory damage detection method (presented in Section 2.3) is applied
in the following manner. First, the degrees of freedom affected by damage are isolated using Eqs. (10) and
(13). Then, using the augmented modal properties from multiple augmentations, Eq. (42) is solved for the
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Fig. 7. Case 3: Predicted damage in a nonlinear 3-bay structure when three cubic springs are damaged (& exact damage; � predicted
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Fig. 8. Case 3: Predicted damage in a nonlinear 3-bay structure when three beams are damaged (& exact damage;� predicted damage for

no noise; � predicted damage for 5% random eigenvector noise).

K. D’Souza, B.I. Epureanu / Journal of Sound and Vibration 316 (2008) 101–121116
damage in nonlinear parameters. Next, the damage in nonlinear parameters is incorporated, and a symmetric
augmentation is produced. Finally, the degrees of freedom affected by damage are solved for again (and, as
expected, no damage is found).

Results for numerical simulations where 3 cubic springs lose some of their stiffness is plotted in Fig. 7. Two
of the damaged cubic springs connect nodes to ground, and one connects two nodes to each other. The percent
of damages (relative to the healthy spring) in the cubic spring stiffnesses range from 40% to 50%. The plot
presents element by element the values of the identified stiffness perturbation matrix DK. In order to better
visualize the results every 100th index is plotted unless the absolute value of the average value of damage
predicted is greater than 10. Shown are the exact value of the damage, the damage predicted using the exact
eigenvectors of the system, and the damage predicted when there is 5% noise in the eigenvectors of the system.
For the case of noisy data, 100 separate calculations were performed, and average and standard deviation
error bars are plotted. Fig. 7 shows that, when exact eigenvectors of the system are used, damage in nonlinear
parameters can be assessed exactly. Also, the average prediction is still quite accurate when there is as much as
5% random noise. The maximum standard deviation in the damaged parameters is approximately 16% of the
actual damage in that parameter.

3.5. Case 3: Scenario 2: Damage in linear parameters

The second scenario examined for case 3 is damage purely in linear parameters. The methodology is carried
out similarly to the scenario of damage in nonlinear parameters. However, little or no damage is predicted in
the nonlinear parameters (in the presence of noise). As expected, damage is predicted when the damage
location algorithm is employed a second time. Finally, generalized minimum rank perturbation theory is
carried out using Eq. (32) to identify the damage in linear parameters.
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Results for numerical simulations where the stiffness of three beams is reduced are plotted in Fig. 8. One of
the damaged beams connects a node to ground, and two connect two nodes to each other. The percent of
damages (relative to the healthy beam) in the beam stiffnesses range from 40% to 50%. The data is plotted in
the same way as Fig. 7, with 100 separate calculations performed for the case of 5% noise.

The results in Fig. 8 show that, when exact eigenvectors of the system are provided, damage (in this case
linear) can be assessed exactly. Also, when there is 5% random noise, the average prediction is still quite
accurate, although it deviates somewhat more than the damage in nonlinear parameters (shown in Fig. 7). The
maximum standard deviation in the damaged parameters is approximately 28% of the actual damage in that
parameter.

3.6. Case 3: Scenario 3: Simultaneous damage in linear and nonlinear parameters

The third scenario examined for case 3 is combined damage in linear and nonlinear parameters. Similarly to
the first two scenarios, after the damaged degrees of freedom are isolated using Eqs. (10) and (13), damage to
the nonlinear parameters is determined using Eq. (42). Then, the system is updated (and made symmetric).
Next, the damage location is identified, and finally the damage in linear parameters is determined using
Eq. (32).

Results for numerical simulations where the stiffness of one beam and one cubic spring is reduced are
plotted in Fig. 9. The damaged cubic spring connects two nodes to each other, and has its stiffness reduced by
45%. The damaged beam connects a node to ground, and has its stiffness reduced by 50%. The data is plotted
as in Fig. 7, with 100 separate calculations performed for the case of 5% noise.

The results in Fig. 9 show that damage in both linear and nonlinear parameters can be assessed exactly when
exact eigenvectors of the system are provided. Also, when there is 5% random measurement noise, the average
prediction is still quite accurate. The standard deviation in the linear damaged parameter is approximately 8%
of the actual damage, while the standard deviation in the nonlinear damaged parameter is approximately 6%
of the actual damage.
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Fig. 9. Case 3: Predicted damage in a nonlinear 3-bay structure when one cubic spring and one beam are damaged (& exact damage;
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Results for numerical simulations where the stiffnesses of three beams and three cubic springs are reduced
are plotted in Fig. 10. One of the damaged beams connects a node to ground, and two connect two nodes to
each other. Two of the damaged cubic springs connect nodes to ground, and one connects two nodes to each
other. The percent of damages (relative to the healthy case) ranges from 40% to 50% stiffness loss. The results
are for 100 separate calculations performed for the case of 5% noise. This plot shows that, even with more
complicated damage cases, the methodology works precisely when there is no noise, and it is quite accurate
with as much as 5% measurement noise. The maximum standard deviation in the linear damaged parameters
is approximately 35% of the actual damage, while the maximum standard deviation in the nonlinear damaged
parameters is approximately 14% of the actual damage.

3.7. Case 3: Effects of noise and amount of damage

To better understand the effects of noise and of the amount of damage on the multiple augmentations
generalized minimum rank perturbation theory method (presented in Section 2.3), several additional cases
were examined. The results are summarized in Table 1, and consist of 10% and 50% damage to the same two
elements damaged (as shown in Fig. 9) for 1%, 3%, 5%, and 10% noise. In each case, the percent error in the
average predicted damage from 100 separate calculations is reported.

As expected, Table 1 shows that, in general, as the amount of noise is increased, the percent of error in the
average predicted damage value is increased for both linear and nonlinear elements. Also, it is clear that the
error percentage drops as the amount of damage in the elements are increased from 10% to 50%. For low
noise (less than 3%) the methodology can predict damage as low as 10%. When noise is increased however,
the damage location methodology fails to isolate the damaged degrees of freedom, which makes the
methodology unable to predict damage. A final note is that the damage in nonlinear parameters is predicted
significantly more accurately then the damage in linear parameters for the cases examined.

3.8. Effects of the eigenvector filtering algorithms on measurement noise

The effectiveness of the filtering algorithms are demonstrated in several numerical simulations. The results
are summarized in Tables 2–4. Table 2 shows the results obtained by using the iterative generalized minimum
rank perturbation theory method (presented in Section 2.2) for the nonlinear Kabe system (shown in Fig. 2)
with 1%, 3%, and 5% random measurement noise, and for 100 separate numerical simulations. The linear
spring connecting mass 2 to ground has a 10% reduction in stiffness, the nonlinear spring connecting mass 4 to
ground has a 20% reduction in stiffness and the Coulomb friction between mass 6 and ground has a 35% rise
in friction. Three cases were investigated, including a case where no filtering algorithms is used, a case where
Zimmerman and Kaouk’s filtering algorithm [19] is used alone, and a case where Zimmerman and Kaouk’s
filtering algorithm is used in conjunction with the new filtering algorithm proposed herein. The results in
Table 2 show that the additional filtering algorithm helps reduce the effects of noise, and leads to average
predicted damages closer to their exact values. In addition, since the new filtering algorithm is applied before
Table 1

Percent error in the average predicted damage from 100 separate calculations

Exact percent damage Element type Random noise %

1 3 5 10

Prediction error %

10 Linear 6.9 12.4 – –

Nonlinear 0.4 1.6 – –

50 Linear 2.3 5.9 7.8 16.1

Nonlinear 0.1 0.3 1.6 1.5

The symbol – indicates that the algorithm is unable to work because it could not identify the damaged degrees of freedom.
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Table 2

Identified percent damage and the effect of the eigenvector filtering algorithms on reducing noise in the Kabe System

Filters Exact percent damage Random noise %

l 3 5

Predicted % damage

No filter 10 9.9 9.8 –

20 20.0 19.8 –

35 28.0 24.3 –

Filter 1 10 10.0 9.9 –

20 20.0 19.8 –

35 28.7 23.5 –

Filters 1 and 2 10 10.0 10.0 9.9

20 20.1 20.1 20.2

35 35.1 24.7 30.5

Filter 1 was proposed by Zimmerman and Filter 2 is the new filtering algorithm proposed herein. The symbol – indicates that the

methodology was not used because the damage location could not be identified.

Table 3

Identified percent damage and the effect of the eigenvector filtering algorithms on reducing noise in the 2 degree of freedom truss system

Filters Exact percent damage Random noise %

2 5 10

Predicted % damage

No filter 10 10.7 – –

20 19.9 – –

30 28.0 – –

Filter 1 10 9.8 – –

20 20.0 – –

30 30.3 – –

Filters 1 and 2 10 10.0 9.9 10.4

20 20.0 20.0 19.9

30 30.0 30.3 28.3

Filter 1 was proposed by Zimmerman and Filter 2 is the new filtering algorithm proposed herein. The symbol – indicates that the

methodology was not used because the damage location could not be identified.
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the damage location algorithm is used, it helps the damage location algorithm as well, which allows the
iterative generalized minimum rank perturbation theory method to work for larger amounts of noise.

Similar to Table 2, Table 3 also shows results obtained by using the iterative generalized minimum rank
perturbation theory method, but for the nonlinear truss structure (shown in Fig. 3) with 2%, 5%, and 10%
random measurement noise, and for 100 separate numerical simulations. The linear stiffness connecting mass
2 to ground has 20% damage, the nonlinear spring connecting mass 2 to ground has 10% damage, and the
Coulomb friction at the second degree of freedom is increased by 30%. Each of these cases were performed for
the same filtering scenarios as in Table 2. It is demonstrated that the additional filtering algorithm helps obtain
a better estimate of the state of damage. Additionally, it enables the iterative generalized minimum rank
perturbation theory method to work for 5% and even 10% random measurement noise.

Table 4 shows the results obtained using the multiple augmentations generalized minimum rank
perturbation theory method (presented in Section 2.3) for the nonlinear 3-bay structure with 1%, 3%, and
5% random measurement noise, and for 100 separate numerical simulations. The linear beam connecting the
19th degree of freedom to ground is reduced by 10%, the nonlinear spring connecting the 13th degree of
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Table 4

Identified percent damage and the effect of the eigenvector filtering algorithms on reducing noise in the 3-bay structure

Filters Exact percent damage Random noise %

1 3 5

Predicted % damage

No filter 10 8.6 7.9 –

20 20.0 19.2 –

35 35.0 34.3 –

Filter 1 10 9.3 7.8 –

20 20.0 19.4 –

35 35.0 34.5 –

Filters 1 and 2 10 9.2 8.3 7.8

20 19.9 19.9 19.8

35 34.7 34.8 33.8

Filter 1 was proposed by Zimmerman and Filter 2 is the new filtering algorithm proposed herein. The symbol – indicates that the

methodology was not used because the damage location could not be identified.
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freedom to ground is reduced by 35%, and the nonlinear spring connecting the 25th degree of freedom to the
49th is reduced by 20%. The same filtering cases were performed as in Table 2. The additional filtering
algorithm, generally alleviates the effects of noise and allows the multiple augmentations generalized minimum
rank perturbation theory method to operate well for larger amounts of random measurement noise.

4. Conclusions

In this paper, a generalized damage detection methodology which is applicable to both linear and nonlinear
systems was presented. The methodology uses a specially designed augmentation to model the nonlinear
system, and a generalized minimum rank perturbation theory (GMRPT) to detect damage in the augmented
system. The types of nonlinearities demonstrated herein include Coulomb friction and cubic springs. An
iterative GMRPT method was used to detect simultaneous damages in mass and stiffness parameters for
lower-dimensional systems. Also, multiple augmentations GMRPT was used to determine damage in linear
and nonlinear parameters when an incomplete set of right eigenvectors is available (and) for high-dimensional
systems. Finally, two eigenvector filtering algorithms were presented that reduce the effects of random
measurement noise on the accuracy of both damage detection methods. The new filtering algorithm enables
these methodologies to discern the damage location when the level of noise is larger, thus allowing damage to
be detected accurately when the measurement data is more corrupted by noise. The algorithms proposed have
been demonstrated numerically for several different nonlinear systems. The effectiveness of the proposed
methods were demonstrated, and the effects of measurement errors were presented.
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